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Mean-field theory and fluctuations in Potts spin glasses: I1 

Gabriel Cwilicht 
Institute for Physical Science and Technology, University of Maryland, College Park, M D  
20742. USA 

Received 14 June 1990 

Abstract. The fluctuations in the ordered phase around the mean-field solution are incorpor- 
ated in a renormalization group approach and it is found that for a small range of the 
parameters they restore scaling close to the upper critical dimension. For the 3-state case 
it appears that fluctuations destroy the stability of the solution and cause the system to 
undergo a first-order phase transition. Non-universal fluctuation corrections to the equation 
of state above six dimensions are obtained. 

1. Introduction 

The problem of understanding the effect of fluctuations around the mean-field solution 
of Ising spin glasses has been a tantalizing one [l-41 and progress has been steady 
but slow. Many of the difficulties found there are connected to the complexity of the 
mean-field solution itself. (For a review see [ 5 ] . )  

It is therefore interesting to look at the effect of the fluctuations in spin-glass models 
which have a simpler structure at the mean-field level, which provides a more accessible 
starting point. 

In a previous paper [ 6 ] ,  to be referred to as I, it was shown that an effective 
Hamiltonian can be obtained for the Potts system with short-range interactions which 
are randomly distributed, using the replica trick. The replica symmetric solution 
obtained when looking for a stationary point of the effective Hamiltonian is unstable, 
and the instability in the ‘replicon’ fluctuation modes appears at order t = ( TG - T ) /  TG 
(in the Ising case the corresponding modes are marginal at this order and the instability 
appears at order t ’ ) .  A replica symmetry breaking solution (with only one level of 
replica symmetry breaking) exists, and the corresponding transition is continuous for 
p < 4, p being the number of equivalent Potts’ states. The Gaussian eigenvalues of 
fluctuations around this solution are stable for p > pa = 2.8. Two of the modes (the DR 

mode and the I B  mode in the notation introduced in I )  are soft in the sense that the 
correlation length associated with them diverges (at the mean-field level) with an 
exponent vSoft = 1, which is bigger than the exponent vfast = associated with all the 
remaining modes, indicating a failure of conventional scaling. The leading term of the 
mass of the soft modes depends on the quartic coupling y (see (5.21) of I). The 
long-range fluctuations in the ordered phase renormalize the quartic coupling already 
for d < 8, and they have to be taken into account to obtain the correct temperature 
dependence and critical exponents near the transition. 

t Present address: Department of Physics, Washington University, Campus Box 1105, Saint Louis, MO 
63130, USA. 
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The fluctuations in the direction of the soft modes (in replica space) are the ones 
that play the dominant role, and when they are computed to one-loop two different 
behaviours emerge. 

The fluctuations associated with the I B  family are renormalized and the leading 
term of the corresponding eigenvalue acquires a t (d-4) '2  dependence, which restores 
the proper scaling behaviour at d = 6, in the whole range of existence of the mean-field 
solution, in agreement with Fisher and Sompolinski [7]. 

The fluctuations associated with the DR replicon modes instead, will only be 
renormalized in a similar way for p > p1 = 3.77. For p <pl  an instability develops in 
which the coupling is renormalized away from the 'stability wedge' of the solution 
discussed in I, a scenario usually associated with a fluctuation-driven first-order phase 
transition [8,9]. 

As the presence of the dangerous quartic coupling requires an understanding of 
the behaviour of the system above the upper critical dimension (for 6 < d < 8), non- 
universal corrections to the free energy and equation of state are present. To one-loop 
the effect of those corrections is to lower the p c  (the value of p above which the 
continuous solution ceases to exist) from its mean-field value pc  = 4. 

The plan of this paper is as follows. In section 2 we outline the way of evaluating 
the leading contribution of the fluctuations, in section 3 we apply those results to the 
renormalization of the intergroup fluctuations, in section 4 we compute the renormaliz- 
ation of the intragroup fluctuations, in section 5 we evaluate corrections to the equation 
of state, and make some concluding remarks. 

2. The leading fluctuations 

The cubic terms of the effective Hamiltonian (equation (2.13) of I) can be expressed 
in terms of the eigenmodes found in appendices 2 and 3 of I, through an orthogonality 
transformation: 

The notation introduced is as follows. Capital letter indices are group indices, greek 
letters are replica indices running inside each group and lower case indices are 
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Potts-component indices. q k p  represents one of the intragroup modes associated with 
group I; its components ( q k p )  Ebp will be zero, then, unless a and p belong to the group 
I;  in this case they will be RapPab, with R,, the orthogonal combinations of the replica 
vectors introduced in equations (A2.2) and (A2.3) of I and the Potts vectors Pab being 
the ( p  - 1 ) 2  vectors of type PA,  PD, Pv and PT introduced in appendix 2 of I. q;,ab is 
one of the intergroup modes associated with the pair of groups (I, J); its components 
(q;,&)rf are zero when the condition a E I and p E J is not satisfied; otherwise they 
are RapSacSbd, with the Rap being the orthogonal combinations of the replica vectors 
introduced in (A3.2) of I .  

The replica part couplings are defined 

(2.3~1) 

(2.36) 

The range of the sums over replica indices involved in these definitions has to be 
understood in each case. For example, the indices a, p, y in the definition of TE run 
over the group I in the first term of expression (2.2); they ran over the groups I, J and 
K, respectively, in the second term of that expression; and a and p run over group I 
and y over group J in the last term. 

The general expressions for these cubic replica couplings are very complicated but 
they can be obtained easily in some particular cases in which we will need them. The 
Potts indices’ couplings are defined as 

v u  
TZ(P1,  p2, p3)= - ( P l ) a d ( P 2 ) b e ( P 3 ) c f  

0 b . c  P 
(2.4) 

Only one of the terms obtained mixes intergroup and intragroup modes. The first 
(second) term in the RHS of expressions (2.1) and (2.2) only couples intragroup 
(intergroup) fluctuations among themselves. 

An important simplification in these expressions can be achieved by the following 
observation. As we will argue below, in the range 6 < d < 8 the only coupling of the 
system that has to be renormalized is the quartic coupling, and all the one-loop 
contributions to its renormalization which are not negligible in the transition region 
contain integrals of the form 

where the A,  are eigenvalues associated with the fluctuation modes found previously. 
These integrals have a divergence (when t + 0) in less than eight dimensions, renormaliz- 
ing the quartic coupling y away from its original value yo. Although this renormalization 
happens in any system with a quartic and cubic term in its Hamiltonian, in general it 
furnishes only a non-leading correction; in this particular case, because of the cancella- 
tion of the leading term in the mass of the soft modes, this renormalization plays a 
crucial role. 

The terms involving four soft modes will behave asymptotically as t ( d - 8 ) a / 2 ,  where 
we assumed that the renormalized eigenmodes are Asoft  - t a .  (Above d = 8 a is equal 
to 2, as found in the mean-field solution, but for d < 8  it has to be determined 
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self-consistently from the renormalization calculation). All the other terms where at 
least one of the modes is not soft, A F  - r, will be less divergent. (For d < 6 there are 
subleading corrections coming from the terms in which exactly one of the modes is 
fast, which will diverge as an intermediate power.) In the range 6 < d < 8 in which we 
are interested, and close enough to the transition, we need to keep only the contributions 
of the diagrams where A ,  = A 2  = A 3  = A 4  = an eigenvalue associated with a soft mode. 

We can use this fact to simplify the cubic terms of the effective Hamiltonian (2.1) 
and (2.2), neglecting all the terms which will not lead to the most diverging corrections. 
Two properties of the replica vectors are useful here. 

PropertyP1. All the replicon modes (equations (A2.2c), (A2.3b) and (A3 .2~)  of I) verify 

1 R,, = 1 R,, = 0. 
a D 

Property P2. All the anomalous modes (equations (A2.2b), ( A 2 . 3 ~ )  and (A3.2b) of I) 
satisfy a weaker condition 

1 R,, = 0. 
a,, 

The properties P1 and P2 can be easily verified performing by the sums in the 
corresponding expressions, and they simply express the orthogonality in replica space 
of these modes with respect to the breathing mode. 

Imposing in expressions (2.1) and (2.2) the condition that at least two of the modes 
in each term have to be soft modes (as terms that have more than one fast mode will 
necessarily imply diagrams with one of the internal A i  being soft and giving a subleading 
contribution), the cubic terms of the effective Hamiltonian become 

PI 

In all the terms containing only intergroup modes, by using the properties P1 and P2 
in the evaluation of the tensors T: and TE, only terms coupling soft modes remain 
(belonging to the I B  family). The replica indices are, thus, eliminated. Accordingly q:\ 
stands, from now on, for a soft intergroup mode. The structure of these pure intergroup 
terms (first two terms in expression (2.6)) reproduces the original structure of the cubic 
couplings of the theory in (2.13) of I, because there is only one intergroup soft mode 
associated with each pair of replica groups (besides the trivial ( p  - 1)2 Potts degeneracy). 

In the case of the pure intragroup terms (the third and fourth terms in expression 
(2.6)), when the Potts tensors T: and T i  are evaluated using the fact that the soft 
modes are diagonal in the Potts indices and that the D modes are the only non-traceless 
modes in Potts space, only couplings between D modes remain, and the Potts index 
is no longer necessary. Two of the qk in these terms have to be soft modes DR and 
the third one can be another DR mode or one of the fast DB or DA modes. 

In the last term, which mixes both kinds of fluctuations, only the terms where q 1  
is a B mode in replica space survive (using again the properties P1 and P2) and, thus, 
the modes q::, q:: must be soft intergroup modes, but the mode q '  is fast. 
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The different vertices obtained are depicted in figure 1, using a modification of a 
representation first used in this problem by Goldschmidt [ 101. Double lines represent 
intergroup modes (the I families introduced in appendix 3 of I )  while single lines 
represent the intragroup families ( D ,  V, T, A )  discussed in appendix 2 of I .  

The leading term of the eigenvalues associated with the non-soft modes ( 5 . 2 ~ - k )  
of I depends only on the cubic coupling w which is not renormalized for 6 < d < 8 (it 

1.a J ,  h 1.a J d 
I 1  

(Cl i d )  

Figure 1. Graphical representation of the cubic vertices responsible for the leading correc- 
tions to the quartic coupling. Double lines represent intergroup modes, single lines are 
intragroup modes. ( a )  First term in ( 2 . 6 ) .  The dots represent the U Potts tensors. ( 6 )  Second 
term in ( 2 . 6 ) .  ( c )  Third and fourth terms in ( 2 . 6 ) .  The open dots represent the tensors T: 
or T:. ( d )  Last term in ( 2 . 6 ) .  The single line represents a mode belonging to the B families, 
which is non-soft, and should not be connected when obtaining the quartic coupling 
diagrams. 

1 . a  J ,  h 

(a)  
I a  J b  

1.a J . d  

( b )  
l , a  J . d  

Figure 2. Diagrams contributing to the renormalization of the I B  soft eigenvalue. 
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‘ I . R ,  

Figure 3. Diagrams contributing to the renormalization of the DR soft eigenvalue. 

is an irrelevant variable for d > 6 ) ,  and it is not affected by the renormalization of the 
quartic coupling. We need only focus, then, on the quartic coupling, which will affect 
the leading behaviour of the soft modes I B  and DR. 

The only important diagrams that contribute to its renormalization are represented 
in figures 2 and 3. The reason for this is discussed in appendix 1. It is interesting to 
note that to the leading order considered here in the one-loop corrections, the two 
families of soft modes renormalize independently from each other, i.e. the diagram 
which renormalizes the intergroup soft mode ( I B )  in figure 2 only contains internal 
lines of that type, and the same is true for the intragroup modes (DR) in figure 3. This 
is important for the self-consistent calculations as the two families behave in different 
ways under renormalization, as will be discussed later. 

3. Renormalization of the intergroup fluctuations 

The relevant contributions to the eigenvalues associated with the I B  modes coming 
from the diagrams in figure 2 are 

where the uninteresting numerical constant c comes from the momentum integral. The 
derivation is given in appendix 2. 

Inserting the mean-field solutionvalues ((4.5) of I), we obtain, close to the transition, 
in the n + 0 limit 

-$cw4q2(p -4)2(p -2)A(idg-*)”(l +O(yt))q:,  (3.2) 

where for internal consistency we require that y t  should vanish when t + 0. The sign 
of this renormalized contribution, which is constant throughout the range of validity 
of the solution (po  c p c 4), is a crucial result. 

Adding this contribution to the mean-field value of the eigenvalue obtained in 
(5.21) of I: 

+$CU‘(P -2)A\i-8)‘2 
t 2  y,3(7p2 -24p + 12) 

‘ l B = 7 (  24(4-p)’ (3.3) 

It is clear that (i)  the fluctuation generated second term will dominate for d -= 8, 
renormalizing the behaviour of the eigenvalue away from the mean-field value found 
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previously, and (ii) it will still be stable. Although it is tempting to use (3.3) to obtain 
a self-consistent equation for A - t o  

d - 8  4 
cy=- (Y+2+cY=-  

2 10-d 

this approach would fail to consider the full effect of higher-order couplings not 
included here which renormalize the Gaussian fluctuations eigenvalues in a similar way. 

The correct dependence can be obtained from the standard renormalization group 
approach, through the integration of the differential recursion relation for the quartic 
coupling (which has now a w 4  term coming from the diagrams in figures 2 and 3) 

dv = ( 4  - d ) y  + Aw4 
dl  (3 .4)  

together with the equation for the cubic coupling, dw/dl=  [ ( 6 -  d ) / 2 ] w .  These 
equations have a solution which is dominated far from criticality by y (  I)  L- w4( I )  when 
6 < d < 8. Note that A is a positive quantity and all the signs are consistently reversed 
with respect to the Ising case discussed in [7]. Then we can relate the critical correlation 
length with its long-I value through t -e ' t ( I ) ,  and at a length scale far away from 
criticality (determined by t ( l * )  = t e''* = 1) we can use the mean-field results obtained 
in I for the correlation length associated with these modes 

Replacing the various 1 dependences in ( 3 . 5 ) ,  and that in the expression for the 
critical 5, we obtain 

(3 .6 )  

The temperature dependence of the leading behaviour of the eigenvalue changes from 
the mean-field value t 2  at eight dimensions to a renormalized value t ' d - 4 ) ' 2 ,  and at 
d = 6 the behaviour A I B  - t is obtained. The associated correlation length exponent 
vSoft = ( d  - 4 ) / 4  becomes 4 there, as in the case of the non-soft modes. 

The fluctuations restore the scaling behaviour of the solution, as far as the I B  family 
of modes is concerned, at d = 6 .  A result similar to this was first proposed for Ising 
spin glasses [7]. 

4. Renormalization of the intragroup fluctuations 

Considering the contributions of all the quartic terms that can be obtained from the 
third and fourth terms in expression (2 .6 ) ,  the renormalized quartic coupling is 
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j of the T factors are cubic replica couplings of the type TA introduced in (2.3a), and 
the remaining 4 - j  belong to the type TB, defined in (2.3b) and the sum over the modes 
in the loop extends only over the fast replicon modes to obtain the most diverging 
contribution, as discussed previously. A is the value of the integral over momentum 
space, introduced in (2.5) and obtained previously. 

Although evaluating S, in general is very difficult [12], it can be obtained for the 
Gaussian fluctuations case, when two of its variables are mean-field-like longitudinal 
modes and the corresponding matrices R in replica space are breathing modes (equation 
(A2.2a) of I) denoted as R B .  

It is easy to show, in this case, using the orthogonality of the fluctuation modes 
and the property P1, that 

for any R , ,  R, 
for R , ,  R2 replicon modes. (4.2) 

TA(&, Ri R2) = ~ R ~ R ~  

TB(RB, RI, R ~ ) = - ~ R , R ,  
With this simplification, the expansion around the stable solution can be performed, 
and the sum over all diagrams, (4.1), reduces to 

hw4qZA(  p -4l2iTAA[( p -2)/212+TAB( p - 2) +TBB)qfP,qfP2* (4.3) 

TAA(RI R2) = C TA(RI I R, R ' ) T A ( R ~ ,  R, R') (4.4) 
The couplings T A A ,  T A B  and TBB, which depend on R, and R2,  are defined as 

R , R '  
replicon modes 

with analogous definitions for TAB and TBB. They are evaluated in appendix 3, where 
we obtain 

(m - 3)3 - (m - 5)  

3m2-15m+16  
ti RI  R2 2(m - I ) (  m - 2)2 

TAA = 2(m - l ) ( m  -212 'R,R2 

TAB = 

m2(m -5 ) (m - 3 ) + 4 ( m 2 - m  -4 )  
4( m - 1 ) (  m -2)2 ~ R , R ~ -  TBB = 

(4.5a) 

(4.5b) 

(4.5c) 

With these values, the contribution to the renormalization of the DR replicon mode 
R I  in (4.3) can be evaluated close to the continuous transition, where 

m = -  
2 

as obtained in I. The result obtained is 

&w4q2[(p-4)3/(p-6)2](p3- 19p2+ 120p-236)A(1 +O(t))(qR1)2 (4.6) 
and the corresponding eigenvalue A D R  becomes 

(4.7) 
where P ( p )  is the cubic polynomial obtained in (4.6). 

As in the case of the intergroup modes, close to the transition the second term will 
dominate, as A, the momentum integral, diverges below eight dimensions for t + O .  
The crucial difference comes from the fact that the polynomial P changes sign for 
p = p1 = 3.77 and remains negative for p < pI . 

For p > p1 the fluctuations renormalize the behaviour of these modes in the same 
way as the I B  modes discussed in section 3. In this range of values of the parameter 
p ,  all the soft modes are renormalized by the fluctuations in such a way that the scaling 

A D R  = ( A D R ) m e a n  field +i%w4[(4 - P ) 3 / ( P  - 6 ) 2 1 A P ( ~ ) q 2  
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behaviour of the solution is restored at the upper critical dimension d = 6, and all 
fluctuation modes have correlation lengths that diverge at the transition as 5 - 1/  r 1 l 2 .  

For po < p < p l ,  and in particular for the physical case of the three-state Potts model, 
the fluctuations destroy the stability of the solution, as the quartic coupling constant 
flows towards a negative value. 

Although in this and the previous section we calculated the one-loop corrections 
to the eigenvalues associated with the propagating modes via the renormalization of 
the quartic coupling, in order to emphasize the similarities (and differences) with a 
similar approach followed in Ising spin glasses, it is not difficult to see that all the 
higher-order couplings can be renorinalized in the same way and the corresponding 
contributions will be of the same order (in t ) .  

For example, the corrections to the DR eigenvalue (the second term on the RHS of 
(4.7)) coming from the nth coupling would be 

where in the last step the value of the integral A,, (generalization of (2 .5 ) )  and of the 
mean-field parameter q have been replaced. 

In the renormalization group approach leading to the correlation length exponent 
(3.6) we can use the asymptotic behaviour y, ,( l)-wn(l) ,  valid for d >6 ,  and, as the 
n-coupling constant appears only in the combination y , , / o n - ’ ,  all the steps leading to 
(3.6) can be reproduced. 

In fact the results of the last two sections can be formally obtained without making 
any reference to the renormalization of a coupling constant, just by expanding the 
effective action around the mean-field solution in the ordered phase, and diagonalizing 
the quadratic part of it to obtain the masses of the eigenmodes to the Gaussian level, 
as was done in I, and using these as the ‘unperturbed’ masses of the propagators. The 
higher-order terms of the action are, then, included in a perturbative approach to 
renormalize these masses, and, if only the leading one-loop correction is kept (the 
‘bubble’ diagram proportional to U’ ) ,  they will again renormalize only the masses of 
the soft modes, with a term proportional to t ‘ d - 4 ) ’ 2 ,  and there is a strict one-to-one 
correspondence between these and the diagrams in figures 2 and 3. 

A treatment along similar lines was used in the ordered phase of an Ising spin 
glass [ 131 keeping only cubic terms in the effective action and integrating the recursion 
relations, and it was shown there that under the renormalization outlined above the 
propagator associated with the replicon [ 141 modes develops an instability. In that 
case such behaviour could be expected since this mode was found to be unstable 
already at the Gaussian level [ 151,  at least in the infinite-range model, and the assumed 
symmetry between replicas has to be broken in order to find a stable solution. 

It is interesting that a generalization of that approach to the case of the Potts glass 
will also show, in spite of the stability of the solution at the Gaussian level, the presence 
of an instability for a certain range of values of p, as discussed before, signalling the 
presence of some new behaviour, which was not present in the Gaussian analysis. 
Although the situation found here, as mentioned earlier, has its similarities with 
scenarios associated with fluctuation-driven first-order transitions, in the sense that the 
contributions coming from the fluctuations renormalize the couplings out of the region 
of stability in parameter space, there are several caveats that have to be made. 

(i) The full renormalization group equations for this system (including up to the 
quartic couplings) have not been solved (even at the one-loop level) and therefore we 
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cannot track exactly the flow of the couplings, which would be necessary to investigate 
the existence of a first-order transition. 

(ii) There are contributions to the fluctuations coming from diagrams with more 
than one loop which become important at critical dimensions higher than six and were 
not considered here, and which may lead to some cancellations. This is believed to 
happen, for example, in the Parisi solution of the Ising spin glass [4]. The whole loop 
expansion would have to be considered in order to make more definite predictions. 

(iii) Even at a more basic level it is possible that the existence of the instability 
might be signalling the fact that we are performing an expansion around the ‘wrong’ 
solution in replica space, and that our starting replica symmetry breaking ansatz 
(equation (4.1) of I )  has to be abandoned. In this connection it should be remembered 
that, as shown in I ,  we cannot obtain a new solution by carrying the replica symmetry 
breaking scheme one (or more) step further in the Parisi hierarchy [ 161, at the mean-field 
level, because we regain the same solution [17]. In the next section we will use the 
full spectrum of fluctuations evaluated earlier to calculate the one-loop corrections to 
the free energy and the equation of state. It would be interesting to investigate if the 
new free energy obtained in this way is also stable against further replica symmetry 
breaking. This implies the calculation of corrections to the eigenvalues obtained in I 
(which enter in the expression for the fluctuation corrected free energy (5.2)) by the 
terms generated by the extra symmetry breaking steps. Such a calculation is presently 
in progress. If the system becomes unstable against further replica symmetry breaking 
(as it has been found to happen at the mean-field level in this model at lower 
temperatures [18] this could provide a way out of the paradox implied by the instability 
found for p < p ,? .  

5. Corrections to the equation of state 

The corrections to the mean-field free energy due to the fluctuations can be obtained 
by realizing that if we expand the effective Hamiltonian of the system (equation (2.13) 
of I) to second order in the fluctuations R:f (Q:f(x) 3 q M F +  R z f ( x ) ) ,  and we transform 
the integration variables in the functional integral of 2 to the eigenmodes of the 
problem found before, the partition function becomes, in momentum space 

exp ( i  - H w F - C  J (k’+Ai)R:(k)) (5.1) 

where the A i  are the eigenvalues found in I. Then, performing the simple Gaussian 
integrals, the free energy becomes 

- H M F + - C  ddk ln(k2+Ai) 
2 i  ‘I _.- 

kT (5.2) 

where unimportant constants have been omitted. This is exactly equivalent to summing 
the contributions of all one-loop diagrams in the loop expansion [ 113. 

The momentum integral can be performed exactly in any (real) dimension d and 
expanding to cubic order in the eigenvalues, the fluctuation term becomes 

+- 
3(d -6) 

1 Ai ~ d - 2  ~ d - 4  

r (d /2 ) (4 r )d i2 f ;  (d--2 2(d  -4 )  

T This possibility was suggested by C de Dominicis. 



Mean-field theory and jluctuations in Potts spin glasses: II 5039 

where A is a cut-off associated with the discreteness of the lattice. We have explicitly 
used the fact that d > 6 in order to neglect terms of the type AY’2 and A Y ”  In A,.  

Using the expression for the eigenvalues A ,  = - to+ a,q + b,q2 + c,q3 + . . . and the 
explicit value of the cut-off (27r in our units) for an hypercubic lattice, this can be 
expressed as 

A2 +!( 1 
B -- A . ) ]  4 d - 4  4(d-6)  

3 rr2 
8(d -4)4 32(d -6)  

AB + (5 .3)  

where we introduced the constants 

B = E b ,  c=cc, A2 = E  af A3 = E  a: AB = E  a,b, (5.4) 
I I I I I 

and used the fact that A = X i  a, = 0, as can be verified using A3.3-A3.16 of I. 
The sums over the eigenvalues defined in (5.4) are evaluated in appendix 4. If we 

insert in (5.3) the values obtained there, and we add the mean-field free energy obtained 
previously (equation (4.2) of I) the total free energy can be expressed as 

(5.5) 

where the constants a and p are defined as 

1 p2-8p+6 
d - 2  8(d-4)  

= d / 2 - 6  

2’17 d /2) 
a =  

The parameter k depends only very mildly on the value of p ,  in the range of validity 
of this solution and can be, for the purpose of this calculation, replaced by its value 
at p = 4. The transition temperature, as expected, is reduced by the fluctuations from 
its original value of TGo = J to 

T G - J  [ I - a  ((22; -- 2 r 2 (  p 2  - 8 p  + 8))] 
d - 4  

Again, this quantity depends very weakly on p ,  and the reduction is of 16% at d = 8, 
and 20% at d = 7. The new reduced temperature t is defined as t = ( TG - T ) /  J. The 
saddle point equations associated with the free energy ( 5 . 5 )  can be obtained in analogy 
with the procedure followed in I (section 4) and the solutions obtained (compare with 
expressions (4.5) obtained in I), are 

q = o  t < O  
( 5 . 6 ~ )  

(5.66) 

In the d + a3 limit the mean-field solution is recovered, and when we approach d = 6 
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the deviations from it become more important. (Of course, the equations are not valid 
in the ‘neighbourhood’ of d = 6, where the logarithmic corrections we discarded to 
arrive at the free energy have to be included.) 

The interesting feature here is that p c ,  the critical value of p for which the solution 
ceases to exist (which is 4 at the mean-field level), diminishes when the dimensionality 
is decreased; and, to the level of the approximation made, it is still valid that the value 
of p at which the continuous solution ceases to exist (where the denominator of ( 5 . 6 ~ )  
vanishes, and the cubic term of F changes sign) corresponds to the value at which m 
reaches the endpoint of its physical range of variation, m( t = 0) = 1 

2 ( d  -6)  18 
p c = 2 +  

( d  - 6 ) + ( ~ / / ~ ) [ ( p - 3 ) ~ + 3 p - 4 ]  

In the last step we used the fact that ( a / p )  is a small parameter, u / p  = for d S 8. 
Although the correction is small unless we are close to the critical dimension, it is 

interesting that it goes in the direction of narrowing the interval of values of p for 
which a continuous stable solution exists, as the instability found in the last section did. 

Complete knowledge of the fluctuation spectrum would permit as, at least in theory, 
to tackle the problem of the free energy of the system in d < 6, where the long-range 
fluctuations dominate; but the peculiar situation found here, where an instability 
appears at even higher dimension, requires us to clarify this situation first, to find the 
‘correct’ minimum in replica space to describe the system. In this sense, the calculation 
in this section should be viewed simply as a first step, to obtain a new free energy 
functional which can be used to explore the existence of other ground states. 

As mentioned before, at least one natural step would be to verify if the feature 
present in the mean-field theory of the Potts glasses and other spin glasses (see 
discussion in I), namely that no further replica symmetry breaking is allowed, will still 
be preserved when the new free energy functional is considered. 

The main result of this work is to show that the effects of fluctuation around the 
mean-field theory of a spin glass can be studied. Furthermore this knowledge can be 
used, although so far only in a crude way, to test the theories themselves. 

Important progress has also been made recently in the simulation of Potts glasses 
in three dimensions [ 19,201 and some hope exists of even exploring higher dimensions 
in order to make connections with field theoretical efforts. 

In conclusion, we summarize the main results obtained here. 
We considered a p-state Potts spin glass, for which a stable mean-field theory phase 

transition had been found before, and using the knowledge of the complete set of 
eigenmodes of fluctuations around it, we showed that the presence of soft modes 
requires the renormalization of some of the couplings already at d = 8. We evaluated 
the contribution of the fluctuations (to one-loop) to the renormalization and found 
that while one of the modes is renormalized in a conventional way, in the sense that 
the fluctuations, when included, restore its scaling behaviour at d = 6, there is a replicon 
mode which behaves quite differently. The fluctuations generated by this mode renor- 
malize the coupling in such a way that, for certain values of p (in particular for the 
three-state Potts model), it moves away from the region of stability and its mass becomes 
negative. It is not clear at this point if this effect signals a true instability which will 
be present at all orders in the loop expansion, or whether some cancellations may 
occur at higher orders. Finally, for d > 6, corrections to the free energy due to the 
fluctuations were obtained, and a dimensional dependence of the boundary between 
first- and second-order transitions was found. 
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Appendix 1 

In the mean-field solution with one level of RSB around which we are expanding, the 
only eigenmodes which are different from zero in the ordered phase are the members 
of the DB family (diagonal in the Potts indices and independent of replica indices, as 
long as both of them belong to the same group). 

When expanding around this mean-field solution, quartic couplings generated by 
diagrams where more than two of the vertices are of the type represented in figures 
l ( a )  and l (b) ,  where all the arms represent I B  modes, will not contribute to the 
Gaussian fluctuation eigenvalues, as they are of higher order in the fluctuations. 

Also, diagrams with only one vertex of the type in figure 1( b )  are clearly impossible 
if the condition I # J # K has to be satisfied among its group indices. So the only 
possible diagram containing these vertices is the one depicted in figure 2 ( a ) ,  and its 
permutations. 

The diagram with one vertex of the type shown in figure l ( a )  and the rest of the 
type shown in figure l ( d )  does not contribute to the expansion around the mean field, 
a result which follows easily using ( A l . l )  of I, as they include at least one Potts tensor 
uobc with self-contracted indices. 

Finally, diagrams with four vertices of the type shown in figure l ( d )  will contribute 
only to the renormalization of the quadratic (non-leading) part of the non-soft longi- 
tudinal DB mode, and are, therefore, not relevant here. 

Appendix 2 

As we want the contribution of the diagrams in figure 2 ( a )  and 2(b) to the Gaussian 
eigenvalues, the external single line modes have to be ‘longitudinal’ (mean-field-like) 
modes of the family DB. The corresponding vertices, the last term in (2.6), then become 

(A2.1) 
L I f J  

Using this expression in evaluating the diagrams, the diagonal character of the coupling 
follows immediately, and the expression 

is obtained, where the c, are the combinatoric coefficients, the factor [( n /  m )  - 21 ( p - 1) 
reflects the sum over the internal loop in figure 2 (a ) ,  and the contraction of the Potts 
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tensors, together with (A1.4) of I, gives the factor ( ~ - 2 ) ~  in the contribution from 
figure 2(b). A is the integral 

Inserting the combinatorial factors and the value of the integral [ 113, we obtain (3.1). 

Appendix 3 

Using the definitions ( 2 . 3 ~ )  and (2.3b) of the replica couplings, we obtain the following 
expressions: 

(A3.1) 

where we introduced the tensor 

(A3.4) 

and the sum over R is restricted only to the replicon modes obtained in ( A 2 . 2 ~ )  of I, 
so we cannot use the completeness of the matrices R. This last tensor can be evaluated 
using the explicit expression of the orthogonal linear combinations of those modes 
[ 121. Alternatively, it can be obtained by realizing that, by symmetry, the tensor takes 
only three different values 

x = s ap,np 

Y = S a p , a y  Y # P  

z = s ap,y6 Y + ff, P, 8 + ff, P.  
Using the definition (A3.4) and the property P1, it easily follows that 

x + ( m - 2 ) y = O  
2y + ( m  - 3 ) ~  = 0 C = O*{ 

and, from the orthonormality of the fluctuation modes, 

C sa,,,, = m ( m  - 1)x 
a f p  

m(m-3)  
2 .  

= number of independent replicon modes = 

From (A3.5) and (A3.6) it follows immediately that 

(A3.5) 

(A3.6) 

(A3.7) 

1 
(m - 1)(m - 2 ) ’  

Sap,va = z = 
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Using these values for the tensor in (A3.1), we obtain 

T A A ( R ~ ,  R2)=2X2 C (Ri)00(R2)0p+4Y2 C (Ri),p(Rz)Oy 
O # P  o t p z y z a  

+ z 2  C ( R l ) a P ( R J y S  
a * P , Y . f i  

all different 

= (2x2 -4y2 + 2z2)6R1R, 

where in the last step the orthogonality of the replicon modes and the property P1 
was used repeatedly. In the same way, some tedious but straightforward algebra in 
(A3.2) and (A3.3) gives 

T A B ( R 1 ,  R2) = [2my2+2(m -4)z2-4xy -4(m -3)yz]6RIR2 

T B B ( R 1 ,  R 2 )  = [( m - 2)x2 + (m - 4)2y2 + ( m 2  - 9 m  + 22)(z2 - 2yz) 

-2(  m -2)xy f 4x216 R , R 2  9 

Inserting the values of x, y and z obtained in (A3.7) in these expressions, we obtain 
the results ( 4 . 5 ~ - c ) .  

Appendix 4 

The calculation of the sums of the different pieces of the eigenvalues can be performed 
using their explicit expressions given in I .  

It is easier, however, to obtain them directly from the expression of the fluctuation 
matrix (equations (3.6), (5 .1 )  of I and the fifth-order term proportional to q3 not given 
before, which we write here for completeness 

M = 6ac6bd {A[ ( m  - 2)( m - 3 + 2( p - 2)) + ;( p 2  - 6 p  + 6)] 

- B[( p - 2)(2m -9 )  +:( p 2  - 6 p  + 6) + ( m  - 9 ) ( m  - 3)] - C ( p  + 2m - 14)} 

- ( FabCd /p)[A{( m - 2)[(m - 3) + 2( P - 211 i ( P 2  - 6~ + 6)) 

+ B( 7 m + 4p - 30) + 8C] 

+ 8,bsCd{[ p - 2 + 2( m - 2)](A + 6) + c }  (A4.1 a )  

(A4.1 b )  

Let us call the parts of the fluctuation matrix proportional to q, q2 and q3,  respectively 

The quantities B, C, A*, A3 and AB can be expressed as Tr M2, Tr M3, 

Furthermore, the block structure of the matrix induced by the replica symmetry 

M: = -8,,6bd{B[i( p 2  - 6 p  + 6 )  +2(m - 2)( p -2)] + c[ (  p - 2) +2(m - 2)]} 

where the notation of the replica matrices was introduced in (3 .7 )  of I. 

MI, M2 and M,. 

Tr( M2)2, Tr( M2)3 and Tr( MI M2). 

breaking scheme implies that 

n 
m 

where Mi and M f  are the intragroup and intergroup parts of each of the matrices. 
Using these two facts, and the expressions for the matrices, the traces in the replica 

space and the Potts space can be obtained, through some tedious but straightforward 
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algebra. (Although expressions like (A4.1) look quite formidable, the calculations, at 
least in the linear case, are greatly simplified from the fact that B and C are traceless.) 

The results obtained are listed below: 

A, = co( (3p -4)(m 

with co = n(m - l ) ( p  - l ) ,  and in the last step the n + 0 limit was taken. 
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